Skip to main content

tokio/
lib.rs

1#![allow(
2    clippy::cognitive_complexity,
3    clippy::large_enum_variant,
4    clippy::module_inception,
5    clippy::needless_doctest_main
6)]
7#![warn(
8    missing_debug_implementations,
9    missing_docs,
10    rust_2018_idioms,
11    unreachable_pub
12)]
13#![deny(unused_must_use, unsafe_op_in_unsafe_fn)]
14#![doc(test(
15    no_crate_inject,
16    attr(deny(warnings, rust_2018_idioms), allow(dead_code, unused_variables))
17))]
18#![cfg_attr(docsrs, feature(doc_cfg))]
19#![cfg_attr(docsrs, allow(unused_attributes))]
20#![cfg_attr(loom, allow(dead_code, unreachable_pub))]
21#![cfg_attr(windows, allow(rustdoc::broken_intra_doc_links))]
22
23//! A runtime for writing reliable network applications without compromising speed.
24//!
25//! Tokio is an event-driven, non-blocking I/O platform for writing asynchronous
26//! applications with the Rust programming language. At a high level, it
27//! provides a few major components:
28//!
29//! * Tools for [working with asynchronous tasks][tasks], including
30//!   [synchronization primitives and channels][sync] and [timeouts, sleeps, and
31//!   intervals][time].
32//! * APIs for [performing asynchronous I/O][io], including [TCP and UDP][net] sockets,
33//!   [filesystem][fs] operations, and [process] and [signal] management.
34//! * A [runtime] for executing asynchronous code, including a task scheduler,
35//!   an I/O driver backed by the operating system's event queue (`epoll`, `kqueue`,
36//!   `IOCP`, etc...), and a high performance timer.
37//!
38//! Guide level documentation is found on the [website].
39//!
40//! [tasks]: #working-with-tasks
41//! [sync]: crate::sync
42//! [time]: crate::time
43//! [io]: #asynchronous-io
44//! [net]: crate::net
45//! [fs]: crate::fs
46//! [process]: crate::process
47//! [signal]: crate::signal
48//! [fs]: crate::fs
49//! [runtime]: crate::runtime
50//! [website]: https://tokio.rs/tokio/tutorial
51//!
52//! # A Tour of Tokio
53//!
54//! Tokio consists of a number of modules that provide a range of functionality
55//! essential for implementing asynchronous applications in Rust. In this
56//! section, we will take a brief tour of Tokio, summarizing the major APIs and
57//! their uses.
58//!
59//! The easiest way to get started is to enable all features. Do this by
60//! enabling the `full` feature flag:
61//!
62//! ```toml
63//! tokio = { version = "1", features = ["full"] }
64//! ```
65//!
66//! ### Authoring applications
67//!
68//! Tokio is great for writing applications and most users in this case shouldn't
69//! worry too much about what features they should pick. If you're unsure, we suggest
70//! going with `full` to ensure that you don't run into any road blocks while you're
71//! building your application.
72//!
73//! #### Example
74//!
75//! This example shows the quickest way to get started with Tokio.
76//!
77//! ```toml
78//! tokio = { version = "1", features = ["full"] }
79//! ```
80//!
81//! ### Authoring libraries
82//!
83//! As a library author your goal should be to provide the lightest weight crate
84//! that is based on Tokio. To achieve this you should ensure that you only enable
85//! the features you need. This allows users to pick up your crate without having
86//! to enable unnecessary features.
87//!
88//! #### Example
89//!
90//! This example shows how you may want to import features for a library that just
91//! needs to `tokio::spawn` and use a `TcpStream`.
92//!
93//! ```toml
94//! tokio = { version = "1", features = ["rt", "net"] }
95//! ```
96//!
97//! ## Working With Tasks
98//!
99//! Asynchronous programs in Rust are based around lightweight, non-blocking
100//! units of execution called [_tasks_][tasks]. The [`tokio::task`] module provides
101//! important tools for working with tasks:
102//!
103//! * The [`spawn`] function and [`JoinHandle`] type, for scheduling a new task
104//!   on the Tokio runtime and awaiting the output of a spawned task, respectively,
105//! * Functions for [running blocking operations][blocking] in an asynchronous
106//!   task context.
107//!
108//! The [`tokio::task`] module is present only when the "rt" feature flag
109//! is enabled.
110//!
111//! [tasks]: task/index.html#what-are-tasks
112//! [`tokio::task`]: crate::task
113//! [`spawn`]: crate::task::spawn()
114//! [`JoinHandle`]: crate::task::JoinHandle
115//! [blocking]: task/index.html#blocking-and-yielding
116//!
117//! The [`tokio::sync`] module contains synchronization primitives to use when
118//! needing to communicate or share data. These include:
119//!
120//! * channels ([`oneshot`], [`mpsc`], [`watch`], and [`broadcast`]), for sending values
121//!   between tasks,
122//! * a non-blocking [`Mutex`], for controlling access to a shared, mutable
123//!   value,
124//! * an asynchronous [`Barrier`] type, for multiple tasks to synchronize before
125//!   beginning a computation.
126//!
127//! The `tokio::sync` module is present only when the "sync" feature flag is
128//! enabled.
129//!
130//! [`tokio::sync`]: crate::sync
131//! [`Mutex`]: crate::sync::Mutex
132//! [`Barrier`]: crate::sync::Barrier
133//! [`oneshot`]: crate::sync::oneshot
134//! [`mpsc`]: crate::sync::mpsc
135//! [`watch`]: crate::sync::watch
136//! [`broadcast`]: crate::sync::broadcast
137//!
138//! The [`tokio::time`] module provides utilities for tracking time and
139//! scheduling work. This includes functions for setting [timeouts][timeout] for
140//! tasks, [sleeping][sleep] work to run in the future, or [repeating an operation at an
141//! interval][interval].
142//!
143//! In order to use `tokio::time`, the "time" feature flag must be enabled.
144//!
145//! [`tokio::time`]: crate::time
146//! [sleep]: crate::time::sleep()
147//! [interval]: crate::time::interval()
148//! [timeout]: crate::time::timeout()
149//!
150//! Finally, Tokio provides a _runtime_ for executing asynchronous tasks. Most
151//! applications can use the [`#[tokio::main]`][main] macro to run their code on the
152//! Tokio runtime. However, this macro provides only basic configuration options. As
153//! an alternative, the [`tokio::runtime`] module provides more powerful APIs for configuring
154//! and managing runtimes. You should use that module if the `#[tokio::main]` macro doesn't
155//! provide the functionality you need.
156//!
157//! Using the runtime requires the "rt" or "rt-multi-thread" feature flags, to
158//! enable the current-thread [single-threaded scheduler][rt] and the [multi-thread
159//! scheduler][rt-multi-thread], respectively. See the [`runtime` module
160//! documentation][rt-features] for details. In addition, the "macros" feature
161//! flag enables the `#[tokio::main]` and `#[tokio::test]` attributes.
162//!
163//! [main]: attr.main.html
164//! [`tokio::runtime`]: crate::runtime
165//! [`Builder`]: crate::runtime::Builder
166//! [`Runtime`]: crate::runtime::Runtime
167//! [rt]: runtime/index.html#current-thread-scheduler
168//! [rt-multi-thread]: runtime/index.html#multi-thread-scheduler
169//! [rt-features]: runtime/index.html#runtime-scheduler
170//!
171//! ## CPU-bound tasks and blocking code
172//!
173//! Tokio is able to concurrently run many tasks on a few threads by repeatedly
174//! swapping the currently running task on each thread. However, this kind of
175//! swapping can only happen at `.await` points, so code that spends a long time
176//! without reaching an `.await` will prevent other tasks from running. To
177//! combat this, Tokio provides two kinds of threads: Core threads and blocking threads.
178//!
179//! The core threads are where all asynchronous code runs, and Tokio will by default
180//! spawn one for each CPU core. You can use the environment variable `TOKIO_WORKER_THREADS`
181//! to override the default value.
182//!
183//! The blocking threads are spawned on demand, can be used to run blocking code
184//! that would otherwise block other tasks from running and are kept alive when
185//! not used for a certain amount of time which can be configured with [`thread_keep_alive`].
186//! Since it is not possible for Tokio to swap out blocking tasks, like it
187//! can do with asynchronous code, the upper limit on the number of blocking
188//! threads is very large. These limits can be configured on the [`Builder`].
189//!
190//! To spawn a blocking task, you should use the [`spawn_blocking`] function.
191//!
192//! [`Builder`]: crate::runtime::Builder
193//! [`spawn_blocking`]: crate::task::spawn_blocking()
194//! [`thread_keep_alive`]: crate::runtime::Builder::thread_keep_alive()
195//!
196//! ```
197//! # #[cfg(not(target_family = "wasm"))]
198//! # {
199//! #[tokio::main]
200//! async fn main() {
201//!     // This is running on a core thread.
202//!
203//!     let blocking_task = tokio::task::spawn_blocking(|| {
204//!         // This is running on a blocking thread.
205//!         // Blocking here is ok.
206//!     });
207//!
208//!     // We can wait for the blocking task like this:
209//!     // If the blocking task panics, the unwrap below will propagate the
210//!     // panic.
211//!     blocking_task.await.unwrap();
212//! }
213//! # }
214//! ```
215//!
216//! If your code is CPU-bound and you wish to limit the number of threads used
217//! to run it, you should use a separate thread pool dedicated to CPU bound tasks.
218//! For example, you could consider using the [rayon] library for CPU-bound
219//! tasks. It is also possible to create an extra Tokio runtime dedicated to
220//! CPU-bound tasks, but if you do this, you should be careful that the extra
221//! runtime runs _only_ CPU-bound tasks, as IO-bound tasks on that runtime
222//! will behave poorly.
223//!
224//! Hint: If using rayon, you can use a [`oneshot`] channel to send the result back
225//! to Tokio when the rayon task finishes.
226//!
227//! [rayon]: https://docs.rs/rayon
228//! [`oneshot`]: crate::sync::oneshot
229//!
230//! ## Asynchronous IO
231//!
232//! As well as scheduling and running tasks, Tokio provides everything you need
233//! to perform input and output asynchronously.
234//!
235//! The [`tokio::io`] module provides Tokio's asynchronous core I/O primitives,
236//! the [`AsyncRead`], [`AsyncWrite`], and [`AsyncBufRead`] traits. In addition,
237//! when the "io-util" feature flag is enabled, it also provides combinators and
238//! functions for working with these traits, forming as an asynchronous
239//! counterpart to [`std::io`].
240//!
241//! Tokio also includes APIs for performing various kinds of I/O and interacting
242//! with the operating system asynchronously. These include:
243//!
244//! * [`tokio::net`], which contains non-blocking versions of [TCP], [UDP], and
245//!   [Unix Domain Sockets][UDS] (enabled by the "net" feature flag),
246//! * [`tokio::fs`], similar to [`std::fs`] but for performing filesystem I/O
247//!   asynchronously (enabled by the "fs" feature flag),
248//! * [`tokio::signal`], for asynchronously handling Unix and Windows OS signals
249//!   (enabled by the "signal" feature flag),
250//! * [`tokio::process`], for spawning and managing child processes (enabled by
251//!   the "process" feature flag).
252//!
253//! [`tokio::io`]: crate::io
254//! [`AsyncRead`]: crate::io::AsyncRead
255//! [`AsyncWrite`]: crate::io::AsyncWrite
256//! [`AsyncBufRead`]: crate::io::AsyncBufRead
257//! [`std::io`]: std::io
258//! [`tokio::net`]: crate::net
259//! [TCP]: crate::net::tcp
260//! [UDP]: crate::net::UdpSocket
261//! [UDS]: crate::net::unix
262//! [`tokio::fs`]: crate::fs
263//! [`std::fs`]: std::fs
264//! [`tokio::signal`]: crate::signal
265//! [`tokio::process`]: crate::process
266//!
267//! # Examples
268//!
269//! A simple TCP echo server:
270//!
271//! ```no_run
272//! # #[cfg(not(target_family = "wasm"))]
273//! # {
274//! use tokio::net::TcpListener;
275//! use tokio::io::{AsyncReadExt, AsyncWriteExt};
276//!
277//! #[tokio::main]
278//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
279//!     let listener = TcpListener::bind("127.0.0.1:8080").await?;
280//!
281//!     loop {
282//!         let (mut socket, _) = listener.accept().await?;
283//!
284//!         tokio::spawn(async move {
285//!             let mut buf = [0; 1024];
286//!
287//!             // In a loop, read data from the socket and write the data back.
288//!             loop {
289//!                 let n = match socket.read(&mut buf).await {
290//!                     // socket closed
291//!                     Ok(0) => return,
292//!                     Ok(n) => n,
293//!                     Err(e) => {
294//!                         eprintln!("failed to read from socket; err = {:?}", e);
295//!                         return;
296//!                     }
297//!                 };
298//!
299//!                 // Write the data back
300//!                 if let Err(e) = socket.write_all(&buf[0..n]).await {
301//!                     eprintln!("failed to write to socket; err = {:?}", e);
302//!                     return;
303//!                 }
304//!             }
305//!         });
306//!     }
307//! }
308//! # }
309//! ```
310//!
311//! # Feature flags
312//!
313//! Tokio uses a set of [feature flags] to reduce the amount of compiled code. It
314//! is possible to just enable certain features over others. By default, Tokio
315//! does not enable any features but allows one to enable a subset for their use
316//! case. Below is a list of the available feature flags. You may also notice
317//! above each function, struct and trait there is listed one or more feature flags
318//! that are required for that item to be used. If you are new to Tokio it is
319//! recommended that you use the `full` feature flag which will enable all public APIs.
320//! Beware though that this will pull in many extra dependencies that you may not
321//! need.
322//!
323//! - `full`: Enables all features listed below except `test-util` and unstable features.
324//! - `rt`: Enables `tokio::spawn`, the current-thread scheduler,
325//!   and non-scheduler utilities.
326//! - `rt-multi-thread`: Enables the heavier, multi-threaded, work-stealing scheduler.
327//! - `io-util`: Enables the IO based `Ext` traits.
328//! - `io-std`: Enable `Stdout`, `Stdin` and `Stderr` types.
329//! - `net`: Enables `tokio::net` types such as `TcpStream`, `UnixStream` and
330//!   `UdpSocket`, as well as (on Unix-like systems) `AsyncFd` and (on
331//!   FreeBSD) `PollAio`.
332//! - `time`: Enables `tokio::time` types and allows the schedulers to enable
333//!   the built-in timer.
334//! - `process`: Enables `tokio::process` types.
335//! - `macros`: Enables `#[tokio::main]` and `#[tokio::test]` macros.
336//! - `sync`: Enables all `tokio::sync` types.
337//! - `signal`: Enables all `tokio::signal` types.
338//! - `fs`: Enables `tokio::fs` types.
339//! - `test-util`: Enables testing based infrastructure for the Tokio runtime.
340//! - `parking_lot`: As a potential optimization, use the [`parking_lot`] crate's
341//!   synchronization primitives internally. Also, this
342//!   dependency is necessary to construct some of our primitives
343//!   in a `const` context. `MSRV` may increase according to the
344//!   [`parking_lot`] release in use.
345//!
346//! _Note: `AsyncRead` and `AsyncWrite` traits do not require any features and are
347//! always available._
348//!
349//! ## Unstable features
350//!
351//! Some feature flags are only available when specifying the `tokio_unstable` flag:
352//!
353//! - `tracing`: Enables tracing events.
354//! - `io-uring`: Enables `io-uring` (Linux only).
355//! - `taskdump`: Enables `taskdump` (Linux only).
356//!
357//! Likewise, this flag enables access to unstable APIs.
358//!
359//! This flag enables **unstable** features. The public API of these features
360//! may break in 1.x releases. To enable these features, the `--cfg
361//! tokio_unstable` argument must be passed to `rustc` when compiling. This
362//! serves to explicitly opt-in to features which may break semver conventions,
363//! since Cargo [does not yet directly support such opt-ins][unstable features].
364//!
365//! You can specify it in your project's `.cargo/config.toml` file:
366//!
367//! ```toml
368//! [build]
369//! rustflags = ["--cfg", "tokio_unstable"]
370//! ```
371//!
372//! <div class="warning">
373//! The <code>[build]</code> section does <strong>not</strong> go in a
374//! <code>Cargo.toml</code> file. Instead it must be placed in the Cargo config
375//! file <code>.cargo/config.toml</code>.
376//! </div>
377//!
378//! Alternatively, you can specify it with an environment variable:
379//!
380//! ```sh
381//! ## Many *nix shells:
382//! export RUSTFLAGS="--cfg tokio_unstable"
383//! cargo build
384//! ```
385//!
386//! ```powershell
387//! ## Windows PowerShell:
388//! $Env:RUSTFLAGS="--cfg tokio_unstable"
389//! cargo build
390//! ```
391//!
392//! [unstable features]: https://internals.rust-lang.org/t/feature-request-unstable-opt-in-non-transitive-crate-features/16193#why-not-a-crate-feature-2
393//! [feature flags]: https://doc.rust-lang.org/cargo/reference/manifest.html#the-features-section
394//!
395//! # Supported platforms
396//!
397//! Tokio currently guarantees support for the following platforms:
398//!
399//!  * Linux
400//!  * Windows
401//!  * Android (API level 21)
402//!  * macOS
403//!  * iOS
404//!  * FreeBSD
405//!
406//! Tokio will continue to support these platforms in the future. However,
407//! future releases may change requirements such as the minimum required libc
408//! version on Linux, the API level on Android, or the supported FreeBSD
409//! release.
410//!
411//! Beyond the above platforms, Tokio is intended to work on all platforms
412//! supported by the mio crate. You can find a longer list [in mio's
413//! documentation][mio-supported]. However, these additional platforms may
414//! become unsupported in the future.
415//!
416//! Note that Wine is considered to be a different platform from Windows. See
417//! mio's documentation for more information on Wine support.
418//!
419//! [mio-supported]: https://crates.io/crates/mio#platforms
420//!
421//! ## `WASM` support
422//!
423//! Tokio has some limited support for the `WASM` platform. Without the
424//! `tokio_unstable` flag, the following features are supported:
425//!
426//!  * `sync`
427//!  * `macros`
428//!  * `io-util`
429//!  * `rt`
430//!  * `time`
431//!
432//! Enabling any other feature (including `full`) will cause a compilation
433//! failure.
434//!
435//! The `time` module will only work on `WASM` platforms that have support for
436//! timers (e.g. wasm32-wasi). The timing functions will panic if used on a `WASM`
437//! platform that does not support timers.
438//!
439//! Note also that if the runtime becomes indefinitely idle, it will panic
440//! immediately instead of blocking forever. On platforms that don't support
441//! time, this means that the runtime can never be idle in any way.
442//!
443//! ## Unstable `WASM` support
444//!
445//! Tokio also has unstable support for some additional `WASM` features. This
446//! requires the use of the `tokio_unstable` flag.
447//!
448//! Using this flag enables the use of `tokio::net` on the wasm32-wasi target.
449//! However, not all methods are available on the networking types as `WASI`
450//! currently does not support the creation of new sockets from within `WASM`.
451//! Because of this, sockets must currently be created via the `FromRawFd`
452//! trait.
453
454// Test that pointer width is compatible. This asserts that e.g. usize is at
455// least 32 bits, which a lot of components in Tokio currently assumes.
456//
457// TODO: improve once we have MSRV access to const eval to make more flexible.
458#[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
459compile_error! {
460    "Tokio requires the platform pointer width to be at least 32 bits"
461}
462
463#[cfg(all(
464    not(tokio_unstable),
465    target_family = "wasm",
466    any(
467        feature = "fs",
468        feature = "io-std",
469        feature = "net",
470        feature = "process",
471        feature = "rt-multi-thread",
472        feature = "signal"
473    )
474))]
475compile_error!("Only features sync,macros,io-util,rt,time are supported on wasm.");
476
477#[cfg(all(not(tokio_unstable), feature = "io-uring"))]
478compile_error!("The `io-uring` feature requires `--cfg tokio_unstable`.");
479
480#[cfg(all(not(tokio_unstable), feature = "taskdump"))]
481compile_error!("The `taskdump` feature requires `--cfg tokio_unstable`.");
482
483#[cfg(all(
484    feature = "taskdump",
485    not(doc),
486    not(all(
487        target_os = "linux",
488        any(target_arch = "aarch64", target_arch = "x86", target_arch = "x86_64")
489    ))
490))]
491compile_error!(
492    "The `taskdump` feature is only currently supported on \
493linux, on `aarch64`, `x86` and `x86_64`."
494);
495
496// Includes re-exports used by macros.
497//
498// This module is not intended to be part of the public API. In general, any
499// `doc(hidden)` code is not part of Tokio's public and stable API.
500#[macro_use]
501#[doc(hidden)]
502pub mod macros;
503
504cfg_fs! {
505    pub mod fs;
506}
507
508mod future;
509
510pub mod io;
511pub mod net;
512
513mod loom;
514
515cfg_process! {
516    pub mod process;
517}
518
519#[cfg(any(
520    feature = "fs",
521    feature = "io-std",
522    feature = "net",
523    all(windows, feature = "process"),
524))]
525mod blocking;
526
527cfg_rt! {
528    pub mod runtime;
529}
530cfg_not_rt! {
531    pub(crate) mod runtime;
532}
533
534cfg_signal! {
535    pub mod signal;
536}
537
538cfg_signal_internal! {
539    #[cfg(not(feature = "signal"))]
540    #[allow(dead_code)]
541    #[allow(unreachable_pub)]
542    pub(crate) mod signal;
543}
544
545cfg_sync! {
546    pub mod sync;
547}
548cfg_not_sync! {
549    mod sync;
550}
551
552cfg_rt! {
553    pub mod task;
554    pub use task::spawn;
555}
556
557cfg_not_rt! {
558    pub(crate) mod task;
559}
560
561cfg_time! {
562    pub mod time;
563}
564
565mod trace {
566    use std::future::Future;
567    use std::pin::Pin;
568    use std::task::{Context, Poll};
569
570    cfg_taskdump! {
571        pub(crate) use crate::runtime::task::trace::trace_leaf;
572    }
573
574    cfg_not_taskdump! {
575        #[inline(always)]
576        #[allow(dead_code)]
577        pub(crate) fn trace_leaf(_: &mut std::task::Context<'_>) -> std::task::Poll<()> {
578            std::task::Poll::Ready(())
579        }
580    }
581
582    #[cfg_attr(not(feature = "sync"), allow(dead_code))]
583    pub(crate) fn async_trace_leaf() -> impl Future<Output = ()> {
584        struct Trace;
585
586        impl Future for Trace {
587            type Output = ();
588
589            #[inline(always)]
590            fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
591                trace_leaf(cx)
592            }
593        }
594
595        Trace
596    }
597}
598
599mod util;
600
601/// Due to the `Stream` trait's inclusion in `std` landing later than Tokio's 1.0
602/// release, most of the Tokio stream utilities have been moved into the [`tokio-stream`]
603/// crate.
604///
605/// # Why was `Stream` not included in Tokio 1.0?
606///
607/// Originally, we had planned to ship Tokio 1.0 with a stable `Stream` type
608/// but unfortunately the [RFC] had not been merged in time for `Stream` to
609/// reach `std` on a stable compiler in time for the 1.0 release of Tokio. For
610/// this reason, the team has decided to move all `Stream` based utilities to
611/// the [`tokio-stream`] crate. While this is not ideal, once `Stream` has made
612/// it into the standard library and the `MSRV` period has passed, we will implement
613/// stream for our different types.
614///
615/// While this may seem unfortunate, not all is lost as you can get much of the
616/// `Stream` support with `async/await` and `while let` loops. It is also possible
617/// to create a `impl Stream` from `async fn` using the [`async-stream`] crate.
618///
619/// [`tokio-stream`]: https://docs.rs/tokio-stream
620/// [`async-stream`]: https://docs.rs/async-stream
621/// [RFC]: https://github.com/rust-lang/rfcs/pull/2996
622///
623/// # Example
624///
625/// Convert a [`sync::mpsc::Receiver`] to an `impl Stream`.
626///
627/// ```rust,no_run
628/// use tokio::sync::mpsc;
629///
630/// let (tx, mut rx) = mpsc::channel::<usize>(16);
631///
632/// let stream = async_stream::stream! {
633///     while let Some(item) = rx.recv().await {
634///         yield item;
635///     }
636/// };
637/// ```
638pub mod stream {}
639
640// local re-exports of platform specific things, allowing for decent
641// documentation to be shimmed in on docs.rs
642
643#[cfg(all(docsrs, unix))]
644pub mod doc;
645
646#[cfg(any(feature = "net", feature = "fs"))]
647#[cfg(all(docsrs, unix))]
648#[allow(unused)]
649pub(crate) use self::doc::os;
650
651#[cfg(not(all(docsrs, unix)))]
652#[allow(unused)]
653pub(crate) use std::os;
654
655cfg_macros! {
656    /// Implementation detail of the `select!` macro. This macro is **not**
657    /// intended to be used as part of the public API and is permitted to
658    /// change.
659    #[doc(hidden)]
660    pub use tokio_macros::select_priv_declare_output_enum;
661
662    /// Implementation detail of the `select!` macro. This macro is **not**
663    /// intended to be used as part of the public API and is permitted to
664    /// change.
665    #[doc(hidden)]
666    pub use tokio_macros::select_priv_clean_pattern;
667
668    cfg_rt! {
669        #[cfg(feature = "rt-multi-thread")]
670        #[cfg_attr(docsrs, doc(cfg(feature = "macros")))]
671        #[doc(inline)]
672        pub use tokio_macros::main;
673
674        #[cfg(feature = "rt-multi-thread")]
675        #[cfg_attr(docsrs, doc(cfg(feature = "macros")))]
676        #[doc(inline)]
677        pub use tokio_macros::test;
678
679        cfg_not_rt_multi_thread! {
680            #[doc(inline)]
681            pub use tokio_macros::main_rt as main;
682
683            #[doc(inline)]
684            pub use tokio_macros::test_rt as test;
685        }
686    }
687
688    // Always fail if rt is not enabled.
689    cfg_not_rt! {
690        #[doc(inline)]
691        pub use tokio_macros::main_fail as main;
692
693        #[doc(inline)]
694        pub use tokio_macros::test_fail as test;
695    }
696}
697
698// TODO: rm
699#[cfg(feature = "io-util")]
700#[cfg(test)]
701fn is_unpin<T: Unpin>() {}
702
703/// fuzz test (`fuzz_linked_list`)
704#[cfg(fuzzing)]
705pub mod fuzz;